求数列:2n+1乘以3的n次方前n项的和
2个回答
展开全部
let
S=1.3^1+2.3^2+...+n.3^n (1)
3S= 1.3^2+2.3^3+...+n.3^(n+1) (2)
(2)-(1)
2S = n.3^(n+1) - (3^1+3^2+...+3^n)
= n.3^(n+1) - (3/2)(3^n-1)
an = (2n+1).3^n
=2[n.3^n] + 3^n
Sn =a1+a2+...+an
=2S +(3/2)(3^n-1)
=n.3^(n+1) - (3/2)(3^n-1) +(3/2)(3^n-1)
=n.3^(n+1)
S=1.3^1+2.3^2+...+n.3^n (1)
3S= 1.3^2+2.3^3+...+n.3^(n+1) (2)
(2)-(1)
2S = n.3^(n+1) - (3^1+3^2+...+3^n)
= n.3^(n+1) - (3/2)(3^n-1)
an = (2n+1).3^n
=2[n.3^n] + 3^n
Sn =a1+a2+...+an
=2S +(3/2)(3^n-1)
=n.3^(n+1) - (3/2)(3^n-1) +(3/2)(3^n-1)
=n.3^(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询