求数列{(2n-1)*3^n}的前n项和
展开全部
用错位相减法:sn=1*3^1+3*3^2+5*3^3+.+(2n-1)*3^n3*sn= 1*3^2+3*3^3+.+(2n-3)*3^n+(2n-1)*3^(n+1)-2sn=1*3^1+ 2*3^2+2*3^3+.+2*3^n-(2n-1)*3^(n+1)=3+2*(3^2+3^3+.+3^n)-(2n-1)*3^(n+1)=3-9+3^(n+1)-(2n-1)*3^(n+1)...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询