已知等比数列an的首项为a,公比为q,其前n项和为Sn,求Tn=S1+S2+......Sn
展开全部
q=1时,Sn=na
Tn=a+2a+3a+……+na
=(1+2+3+……+n)a
=(n(1+n))/2a
q≠1时,Sn=a(1-q^n)/1-q
Tn=a(1-q)/1-q +a(1-q^2)/1-q +……+a(1-q^n)/1-q
=[a/(1-q)]*(1-q+1-q^2+1-q^3+……+1-q^n)
=[a/(1-q)]*(n-(q+q^2+q^3+...+q^n))
=[a/(1-q)]*[n-q(1-q^n)/(1-q)]
Tn=a+2a+3a+……+na
=(1+2+3+……+n)a
=(n(1+n))/2a
q≠1时,Sn=a(1-q^n)/1-q
Tn=a(1-q)/1-q +a(1-q^2)/1-q +……+a(1-q^n)/1-q
=[a/(1-q)]*(1-q+1-q^2+1-q^3+……+1-q^n)
=[a/(1-q)]*(n-(q+q^2+q^3+...+q^n))
=[a/(1-q)]*[n-q(1-q^n)/(1-q)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询