证明当│x-1│≤1时,│x²-1│≤3│x-1│
1个回答
展开全部
证:
|x-1|≤1,-1≤x-1≤1,0≤x≤2
0≤x≤1时,
|x²-1|<3|x-1|
=(1-x²)-3(1-x)
=-x²+3x-2
=-(x²-3x+2)
=-(x-1)(x-2)
=(x-1)(2-x)
x≤1<2,x-1≤0,2-x>0,(x-1)(2-x)<0
|x²-1|<3|x-1|
1<x≤2时,
|x²-1|-3|x-1|
=(x²-1)-3(x-1)
=x²-3x+2
=(x-1)(x-2)
1<x≤2,x-1>0,x-2<0,(x-1)(x-2)<0
|x²-1|<3|x-1|
综上,得:|x-1|≤1时,|x²-1|<3|x-1|
|x-1|≤1,-1≤x-1≤1,0≤x≤2
0≤x≤1时,
|x²-1|<3|x-1|
=(1-x²)-3(1-x)
=-x²+3x-2
=-(x²-3x+2)
=-(x-1)(x-2)
=(x-1)(2-x)
x≤1<2,x-1≤0,2-x>0,(x-1)(2-x)<0
|x²-1|<3|x-1|
1<x≤2时,
|x²-1|-3|x-1|
=(x²-1)-3(x-1)
=x²-3x+2
=(x-1)(x-2)
1<x≤2,x-1>0,x-2<0,(x-1)(x-2)<0
|x²-1|<3|x-1|
综上,得:|x-1|≤1时,|x²-1|<3|x-1|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询