请问这个积分怎么解的? 10
展开全部
令ωy/v0=tanu
y:0→y0,则tanu:0→ωy0/v0,u:0→arctan(ωy0/v0)
等式两边同时积分,
t=∫[0:y0]dy/√(v0²+ω²y²)
=ω∫[0:y0]d(ωy/v0)/√[1²+(ωy/v0)²]
=ω∫[0:arctan(ωy0/v0)]d(tanu)/√(1²+tan²u)
=ω∫[0:arctan(ωy0/v0)]secudu
=ωln(secu+tanu)|[0:arctan(ωy0/v0)]
=ωln[sec(arctan(ωy0/v0))+tan(arctan(ωy0/v0))]-ωln(sec0+tan0)
=ωln[√[(v0²+ω²y²)/v0]+ωy0/v0]-ωln(1+0)
=ωln[√[(1+ ω²y²/v0²)+ωy0/v0]-0
=ωln[ωy0/v0+√[(1+ ω²y²/v0²)]
y:0→y0,则tanu:0→ωy0/v0,u:0→arctan(ωy0/v0)
等式两边同时积分,
t=∫[0:y0]dy/√(v0²+ω²y²)
=ω∫[0:y0]d(ωy/v0)/√[1²+(ωy/v0)²]
=ω∫[0:arctan(ωy0/v0)]d(tanu)/√(1²+tan²u)
=ω∫[0:arctan(ωy0/v0)]secudu
=ωln(secu+tanu)|[0:arctan(ωy0/v0)]
=ωln[sec(arctan(ωy0/v0))+tan(arctan(ωy0/v0))]-ωln(sec0+tan0)
=ωln[√[(v0²+ω²y²)/v0]+ωy0/v0]-ωln(1+0)
=ωln[√[(1+ ω²y²/v0²)+ωy0/v0]-0
=ωln[ωy0/v0+√[(1+ ω²y²/v0²)]
追问
请问secudu的积分=ln(secu+tanu)怎么来的
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询