2个回答
展开全部
应该说是:实对称阵属于不同特征值的的特征向量是正交的。设Ap=mp,Aq=nq,其中A是实对称矩阵,m,n为其不同的特征值,p,q分别为其对应得特征向量. 则p1(Aq)=p1(nq)=np1q (p1A)q=(p1A1)q=(AP)1q=(mp)1q=mp1q 因为p1(Aq)= (p1A)q 上两式作差得: (m-n)p1q=0 由于m不等于n,所以p1q=0 即(p,q)=0,从而p,q正交. 说明:p1表示p的转置,A1表示A的转置,(Ap)1表示Ap的转置
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
2018-10-16
展开全部
通俗点说A等于特征值
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询