圆周率是怎样计算出来的?

 我来答
内蒙古恒学教育
2022-11-08 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
圆周率是用圆的周长除以它的直径计算出来的。“圆周率”即圆的周长与其直径之间的比率。
1、圆周率是一个超越数,它不但是无理数,而且比无理数还要无理。无理数有一个特点,就是小数部分是无限的,而且是不循环的。比如0.9的循环小数,这个虽然无限,但是重复的。而圆周率则是无限,而且数字不会重复,因此圆周率看起来非常长的一串数字。
2、阿基米德是最早得出圆周率大约等于3.14的人。传说在他临死时被罗马士兵逼到一个海滩,还在海滩上计算圆周率,并且对士兵说:“你先不要杀我,我不能给后世留下一个不完善的几何问题。”阿基米德计算圆周率的方法是双侧逼近:使用圆的内接正多边形和外切正多边形的周长来近似圆的周长。正多边形的边数越多,多边形周长就越接近圆的边长。
3、以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有,就是为了兴趣。
黄小姐
2023-05-24 广告
圆周率π的值是怎样计算出来的呢? 在半径为r的圆中,作一个内接正六边形(如图)。这时,正六边形的边长等于圆的半径r,因此,正六边形的周长等于6r。如果把圆内接正六边形的周长看作圆的周长的近似值,然后把圆内接正六边形的周长与圆的直径的比看作为... 点击进入详情页
本回答由黄小姐提供
飞翔雨儿3
2017-12-26 · TA获得超过4万个赞
知道大有可为答主
回答量:5117
采纳率:70%
帮助的人:1114万
展开全部
祖冲之生於南北朝(西元429-500年)范阳蓟县人,他曾算出月球绕地球一周为27.21223日,和现在公认的27.21222日,在小数第五位才有1的误差.难怪西方科学家将月球上的一个火山坑命名叫「祖冲之」,这也是月球上唯一用中国人命名的地方.
在三千多年前,周朝的时候,认为圆周长和直径的比是三比一,也就是说,那个时候的圆周率等 於三,后来,历代许多数学家,像西汉的刘歆、东汉的张衡,都分别提出新的数值.不过,真正求出比较 精确圆周率的,是魏晋时代(约西元263年)的刘徽,而他所用的方法叫做『割圆术』.他发现:当圆内接正多边形的边数不断增加后,多边形的周长会越来越逼近圆周长,而多边形的面积也会越来越逼近圆面积.於是,刘徽利用正多边形面积和圆面积之间的关系,从正六边形开始,逐步把边数加倍:正十二边形、正二十四边形、正四十八边形、正九十六边形,算出圆周率等於3.141024.当时数学家利用一种竹片做成的『算筹』,摆放在地上代表数字进行运算,不但麻烦而且辛苦.
祖冲之在刘徽研究的基础上,进一步地发展,经过既漫长又烦琐的计算,一直算到圆内接正24576边形,而得到一个结论:圆周率的值介於3.1415926和3.1415927之间;同时,他还找到了圆周率的约率:22∕7、密率:355∕113.祖冲之为了求圆周率小数后的第七位准确值,把正六边形的边长计算到小数后二万八千六百七十二位,是很了不起的成就.这当中有三点值得我们注意的,
他是自己做的,因为开平方不能你求小数后第一位到第八位,同时间,有另外一人求第九位到第十六位,.
目前使用的算盘到了十二世纪才出现,祖冲之那个时代还没有算盘,可见其开平方的艰辛.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
麋鹿时往前走oo
科技发烧友

2020-02-29 · 有一些普通的科技小锦囊
知道大有可为答主
回答量:4194
采纳率:100%
帮助的人:554万
展开全部
圆周率是根据"化圆为方"时,已知圆面积7平方软化等积变成的是它的外切正方形面积的九分之七,以它的外切正方形面积的九分之七拼补上两个平方,就推出了对应的直径是3和对应的圆的周长是6+2√3。由此可见,圆的周长与直径的比就是:6+2√3比3。圆周率=6+2√3/3(或约等于3.1547005...)。
其实所谓的圆周率π=3.1415......原本是正6x2ⁿ边形的周长与过中心点的对角线的比,应叫正6x2ⁿ边率。正6x2边率的值和圆周率的值根本不是同一个值。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
常威剧站
高粉答主

2020-12-22 · 关注我不会让你失望
知道答主
回答量:1.6万
采纳率:25%
帮助的人:789万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式