主要控矿因素分析
2020-01-20 · 技术研发知识服务融合发展。
一、矿源层
燕山地区太古宙—古元古代斜长角闪质中深变质岩系是金、银、多金属矿化的主要矿源层,它为成矿作用提供了矿质来源,这已为大量地质资料所证实。
1.矿化与太古宙—古元古代变质岩系空间分布的紧密相关性
燕山地区金、银、多金属矿床多数分布于太古宙—古元古代中深变质岩系中,如金厂峪金矿、华尖金矿、小营盘金矿、青羊沟铅锌矿、姑子沟银-多金属矿、金厂沟梁金矿、莲花山金矿等,冀东地区金矿多数分布于迁西群斜长角闪岩分布区,且矿化与矿源层空间上紧密伴生,矿源层金丰度较高(表4-1)。
表4-1 燕山地区太古宙—古元古代变质岩金丰度对比表
2.矿源层提供金、银、铅、锌等矿质的可能性
大量测试资料表明,燕山地区矿源层的Au、Ag、Pb、Zn、Cu含量较高,其在斜长角闪岩、斜长角闪片岩、片麻岩中的含量高于地壳克拉克值。于润林等以大量微金分析资料说明:冀东金厂峪一带迁西群以斜长角闪岩为主的变质岩金平均丰度为5.05×10-9,高于地壳克拉克值3.5×10-9;笔者在远离矿区的未蚀变的迁西群斜长角闪岩中取样并测定金丰度,测出其金含量为4.5×10-9,高于区内混合岩、麻粒岩与中生代火山岩,也高于地壳克拉克值(表4-1)。杨锡彬、傅成义等分别对冀西北、辽西地区变质岩与中生代岩浆岩的Pb、Zn、Ag、Mo丰度进行过研究,结果表明,在斜长角闪岩质变质岩中这些元素的丰度常高于混合岩与中生代火山岩、侵入岩(表4-2)。
表4-2 燕山地区变质岩与岩浆岩Cu、Pb、Zn、Mo、Ag丰度对比表
因此,燕山地区矿源层具有提供Au、Ag、Pb、Zn等矿质的良好地球化学背景。杨凯(1988)对冀东角闪质变质岩中金的浸出能力进行过实验研究,结果表明,在含HS-、Cl-等离子的较酸性溶液中,斜长角闪岩中的金有较强可溶性,易于迁入热液中;这为斜长角闪岩作为金的矿源层提供了实验依据。
3.金、银、多金属元素来源于矿源层的同位素证据
矿石铅同位素资料表明,燕山地区金、银、铅锌矿床的矿石混合铅中,第一阶段铅均来自于矿源层,模式年龄t1反映了矿源层的成岩年龄(表3-12)。从而说明矿源层对区内重要矿床成矿作用至少提供过部分矿质。
一些学者通过氢、氧同位素资料证实,成矿热液中有变质水的影响或加入(王时麒等,1985)。
上述资料充分地反映了燕山地区矿源层对金、银、多金属矿化的重要意义。
二、岩浆控矿
燕山地区中生代岩浆侵入、火山喷发作用对金、银、多金属矿化具有明显的控制作用。
1.岩浆活动与矿化空间上的紧密伴生性
燕山地区中生代大部分金、银、铜、铅、锌、钼矿化都与印支、燕山期岩浆侵入体或火山活动存在空间上的密切伴生关系;矿体或分布于中酸性火山岩、侵入岩内部,或分布于侵入岩接触带,前者如斑岩型金-铜-钼矿、火山岩型金-银矿、脉型钼矿,后者如夕卡岩型铜-钼-铅锌矿、脉型铅锌矿-多金属矿(表2-1)。中生代石英脉型金矿部分分布于中生代花岗岩内,如峪耳崖金矿、东坪金矿、茅山金矿、水泉金矿等(表2-1),部分分布于中生代花岗岩周围,如山家湾子金矿、金厂沟梁金矿、金厂峪金矿、撰山子金矿等矿床。蚀变岩型金矿如后沟金矿、高家店金矿等皆分布于中酸性侵入体中。中生代矿化与岩浆活动在空间上紧密伴生,并具有成因联系。
2.岩浆活动与矿化时间上的一致性
中生代金、银、多金属矿床成矿期与赋矿岩体、火山岩的成岩时代具有一致性,见表3-9、3—10和3—11。
在时间演化方面,燕山地区燕山期金、银矿化存在两个高峰期,其时代分别为160~170Ma与100~110Ma,与区内燕山期岩浆活动两个高峰期的发生时间一致(图3-20)。
3.岩浆活动提供矿液与矿质的可能性
燕山地区除矿源层提供矿质外,中生代岩浆活动也为矿化带来了部分矿质与矿液。
中生代赋矿岩体的有关微量元素丰度高于一般非含矿岩体,如铅锌矿、铜-钼矿赋矿岩体岩石Pb、Zn、Cu、Mo含量高于其他岩体(表4-2)。牛心山、茅山、峪耳崖、高家店等发育金矿化的花岗质岩石微金含量明显高于非金矿化岩体,也高于地壳克拉克值(表4-3)。这为有关矿化提供了良好的地球化学背景。
峪耳崖金矿、洼子店金矿等矿床的矿石硫同位素资料表明,δ34S呈单塔型分布,峰值所对应的δ34S略正偏(图4-1);反映矿石硫来源于下地壳或上地幔。
以上资料说明,中生代岩浆活动为本区成矿作用提供了部分成矿物质与成矿热液。
中生代岩浆活动与矿化空间上的紧密伴生性、时间上的一致性与岩浆活动提供矿质、矿液的可能性充分反映了燕山地区岩浆控矿的意义。
成矿热液的氢、氧同位素资料表明,部分矿床如峪耳崖金矿、金厂峪金矿的成矿热液部分来自于岩浆水,三家金矿、茅山金矿与金厂峪金矿的成矿热液有岩浆水的混入(图4-2)。
表4-3 燕山地区岩浆岩、变质岩金丰度对比表
①据于润林,1989;②据刘英俊等,1984;③据黎彤,1976;其余为本文资料。上角有*者为含金矿化岩石,其他为非含金矿化岩石。
图4-1 矿质来源于下地壳或上地幔深部源的金矿床矿石硫同位素分布图(据吉林冶金地质勘探公司研究所,1979资料编绘)
Fig.4-1 Diagrams of sulfer isotopic compositions of gold deposits in Yanshan area
a—峪耳崖金矿;b—洼子店金矿。纵坐标N为样品数
三、构造控矿
1.陆内造山作用创造出有利的成矿地质背景
图4-2 燕山地区部分金矿床含矿热液δD—δ18O图解(据于润林、余昌涛等,1989资料编绘)
Fig.4-2 Isotopic diagram of δD—δ18O of gold deposits in Yanshan area
燕山地区地质历史时期发生了多期强烈的地壳运动,但区域金、银、多金属成矿作用主要发生于中生代陆内造山时期,而在其它时期仅形成少量的金-多金属矿床(图3-18、3—19)。究其原因,主要是因为中生代陆内造山作用提供了非常有利的成矿地质背景,陆内造山期频繁的构造-热事件产生了金、银、多金属成矿所必需的热动力、成矿流体、合适的物理化学条件及良好的成矿构造环境。因此,中生代陆内造山作用成为燕山及邻区金-多金属成矿不可缺少的区域背景。
2.不同级别的构造在区域成矿中发挥不尽相同的作用
在燕山陆内造山带内,中生代不同级别的构造对不同级别的成矿单元提供不同类型的成矿地质条件。一级纬向与北东—北北东向隆起带提供金-多金属成矿的有利区域构造环境,区域主干深断裂带为热源体即岩浆的上涌提供必需的通道,区域性二级、三级断裂构造及其复合提供了良好的导矿构造与成矿流体长距离运移、循环的主要通道。矿田、矿区范围内的北东—北北东向、东西向、北西向及近南北向断裂、断裂破碎带、裂隙构造为成矿流体的运移、矿质富集提供了良好的空间。
3.断裂构造通过控制热源体分布进而制约矿化的空间展布
在燕山陆内造山带内,中生代断裂构造对火山喷发、岩浆侵入均有显著的控制作用。大部分的岩浆侵入体与次火山岩都沿不同级别的断裂带展布。而中生代岩浆是本区金-多金属矿化最主要的热源体,并能提供一定的矿质与成矿流体。因此,燕山陆内造山带断裂、岩浆活动、成矿作用三种地质事件常在时间、空间与成因上紧密关联,三位一体,构成中生代不同级别的断裂-岩浆-成矿带(吴珍汉,1991)。
4.主造山期构造脉动性活动导致成矿作用的多阶段性
在燕山陆内造山带内,中生代主造山期构造-岩浆热事件频发,构造调整作用非常活跃,使成矿期构造应力场发生一定程度的变动,导致矿田、矿区范围内成矿物化条件的波动与已形成矿脉的错动或破碎,在容矿构造带内部不断造成新的裂隙并在其中充填新的成矿物质,形成新的矿脉,从而产生热液型金、银、多金属矿化的多阶段性特点。不同阶段矿脉的矿石矿物组合、形成的温压条件都不相同,并且在空间上叠加或相互交切(图4-3)。
图4-3 冀东典型金矿床不同阶段矿脉穿切关系素描图
Fig.4-3 Sketch map showing the cross-cutting relation of veins of different metallogenicstages of gold deposits
1—绿泥石化花岗岩;2—绢云母片岩;3—绢英岩;4—钠长石-石英复脉;5—乳白色石英脉;6—硫化物-石英脉;7—第Ⅰ阶段石英脉;8—第Ⅱ阶段石英脉;9—成矿前石英脉;10—过渡地质界线
2024-09-04 广告