求定积分∫1 →1/√2 √1-x^2/x^2dx!!!
1个回答
展开全部
I = ∫<1 →1/√2> [√(1-x^2)/x^2]dx (x = sinu, dx = cosudu)
= ∫<π/2 →π/4> [(cosu)^2/(sinu)^2]du
= ∫<π/2 →π/4> (cotu)^2du = ∫<π/2 →π/4> [(cscu)^2-1]du
= -[cotu + u]<π/2 →π/4> = -(1+π/4) + (0+π/2) = π/4 - 1
= ∫<π/2 →π/4> [(cosu)^2/(sinu)^2]du
= ∫<π/2 →π/4> (cotu)^2du = ∫<π/2 →π/4> [(cscu)^2-1]du
= -[cotu + u]<π/2 →π/4> = -(1+π/4) + (0+π/2) = π/4 - 1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询