设A为n阶方阵,满足AA^T=E,且|A|=-1,证明|E+A|=0

求答案,真心求答案,不会做,... 求答案,真心求答案,不会做, 展开
 我来答
帐号已注销
2021-01-05 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

A显然是正交矩阵,因此特征值只能有1或-1

又因为|A|=-1,因此特征值肯定有-1(否则的话,所有特征值都是1,其乘积也即行列式|A|=1,而不是-1)

从而A+E必有特征值-1+1=0

则|A+E|=0

或:

|A+E|=|A+AA'|=|A(E+A')|=|A||E+A'|=-|E+A'|=-|A+E|,则|A+E|=0

-|E+A'|=-|A+E|:矩阵的转置的行列式与此矩阵的行列式相等(行列式的性质)

扩展资料:

如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν

其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。

参考资料来源:百度百科-特征值

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
哟月乾07
2019-06-21 · TA获得超过2282个赞
知道大有可为答主
回答量:2934
采纳率:0%
帮助的人:169万
展开全部
A显然是正交矩阵,因此特征值只能有1或-1
又因为|A|=-1,因此特征值肯定有-1(否则的话,所有特征值都是1,其乘积也即行列式|A|=1,而不是-1)
从而A+E必有特征值-1+1=0
则|A+E|=0
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
馨冷若风
2020-11-02 · TA获得超过102个赞
知道答主
回答量:57
采纳率:100%
帮助的人:4.3万
展开全部
|A+E|=|A+AA'|=|A(E+A')|=|A||E+A'|=-|E+A'|=-|A+E|,则|A+E|=0.

-|E+A'|=-|A+E|:矩阵的转置的行列式与此矩阵的行列式相等(行列式的性质)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式