椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点F1(-c,o)F2(c,o),M是椭圆C上的一点,且满足∠F1MF2=π/3.
椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点F1(-c,o)F2(c,o),M是椭圆C上的一点,且满足∠F1MF2=π/3.(1)求离心率e的取值范...
椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点F1(-c,o)F2(c,o),M是椭圆C上的一点,且满足∠F1MF2=π/3.
(1)求离心率e的取值范围;(2)当离心率e取得最小值时,点N(0,3√3)到椭圆上的点最远距离为4√3,求此时椭圆C的方程;(3)设O为坐标原点,P是椭圆C上的一个动点,试求t=|PF1-PF2|/|OP|的取值范围。 展开
(1)求离心率e的取值范围;(2)当离心率e取得最小值时,点N(0,3√3)到椭圆上的点最远距离为4√3,求此时椭圆C的方程;(3)设O为坐标原点,P是椭圆C上的一个动点,试求t=|PF1-PF2|/|OP|的取值范围。 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询