如图所示,∠B=90°,AD=AB=BC,DE⊥AC,求证:BE=DC
1个回答
展开全部
证明:
因为∠B=90°,AB=BC
所以三角形ABC是等腰直角三角形。
所以∠C=45°
因为DE⊥AC
所以三角形DCE是直角三角形。
又因为∠C=45°
所以三角形DCE是等腰直角三角形。
所以DC=DE
因为在RT△ABE与RT△ADE中
AE=AE,AB=AD
所以△ABE≌△ADE(HL)
所以DE=BE
所以BE=DC
解:连接AE
因为AB=AD
<B=<ADE
AE=AD
所以三角形ABE全等于三角形ADE(SAS)
所以BE=DE
因为,∠B=90°,<ADE=90°,
所以∠A
∠C=90°,∠DEC
<C=90°
所以<A=<DEC
因为AB=BC
所以<A=<C
<DEC=∠A
∠DEC=<C
因为<DEC=<C
所以DE=DC
因为DE=DC,BE=DE
所以BE=BC
因为∠B=90°,AB=BC
所以三角形ABC是等腰直角三角形。
所以∠C=45°
因为DE⊥AC
所以三角形DCE是直角三角形。
又因为∠C=45°
所以三角形DCE是等腰直角三角形。
所以DC=DE
因为在RT△ABE与RT△ADE中
AE=AE,AB=AD
所以△ABE≌△ADE(HL)
所以DE=BE
所以BE=DC
解:连接AE
因为AB=AD
<B=<ADE
AE=AD
所以三角形ABE全等于三角形ADE(SAS)
所以BE=DE
因为,∠B=90°,<ADE=90°,
所以∠A
∠C=90°,∠DEC
<C=90°
所以<A=<DEC
因为AB=BC
所以<A=<C
<DEC=∠A
∠DEC=<C
因为<DEC=<C
所以DE=DC
因为DE=DC,BE=DE
所以BE=BC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
创远信科
2024-07-24 广告
2024-07-24 广告
同轴线介电常数是指同轴电缆中介质对电场的响应能力,通常用ε_r表示,是介质相对于真空或空气的电容率。这一参数直接影响信号在电缆中的传播速度和效率。在选择同轴电缆时,需要考虑其介电常数,因为它与电缆的插入损耗、带宽和传输质量等性能密切相关。创...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询