已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.

 我来答
果月庞新语
2020-02-19 · TA获得超过3755个赞
知道大有可为答主
回答量:3189
采纳率:30%
帮助的人:203万
展开全部
a4+b4+c4+d4-4abcd=0,
(a^2-b^2)^2+(c^2-d^2)^2+2a^2b^2+2c^2d^2-4abcd=0,
所以
(a^2-b^2)^2+(c^2-d^2)^2+2(ab-cd)^2=0.
因为(a^2-b^2)^2≥0,(c^2-d^2)^2≥0,(ab-cd)^2≥0,所以
a^2-b^2=c^2-d^2=ab-cd=0,
所以
(a+b)(a-b)=(c+d)(c-d)=0.
又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以
a=b,c=d.
所以
ab-cd=a^2-c^2=(a+c)(a-c)=0,
所以a=c.故a=b=c=d成立.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式