先用数学归纳法证明 $\sum_{i=1}^{n}i^3=\cfrac{n^2(n+1)^2}{4}$。
$n=1$ 时,左边 $=1$,右边 $=\cfrac{1^2 \times 2^2}{4}=1$,成立。
假设 $n=k$ 时命题成立,即 $\sum_{i=1}^{k}i^3=\cfrac{k^2(k+1)^2}{4}$。下证 $n=k+1$ 时命题也成立,即 $\sum_{i=1}^{k+1}i^3=\cfrac{(k+1)^2(k+2)^2}{4}$。
$$\begin{aligned}&\sum_{i=1}^{k+1}i^3 \\=&\sum_{i=1}^{k}i^3+(k+1)^3\\=&\cfrac{k^2(k+1)^2+4(k+1)^3}{4}\\=&\cfrac{k^4+2k^3+k^2+4k^3+12k^2+12k+4}{4}\\=&\cfrac{k^4+6k^3+13k^2+12k+4}{4}\\=&\cfrac{(k+1)^2(k+2)^2}{4}\end{aligned}$$
由数学归纳法证毕。
因此
$$\begin{aligned}&\sum_{i=1}^{n}\left(\cfrac{i}{n}\right)^3\cfrac{1}{n}\\=&\sum_{i=1}^{n}\cfrac{i^3}{n^4}\\=&\cfrac{1}{n^4}\sum_{i=1}^{n}i^3\\=&\cfrac{1}{n^4}\times \cfrac{n^2(n+1)^2}{4}\\=&\cfrac{(n+1)^2}{4n^2}\\=&\cfrac{1}{4}\left(\cfrac{n+1}{n}\right)^2\\=&\cfrac{1}{4}\left(1+\cfrac{1}{n}\right)^2\end{aligned}$$
推倒完毕。