y=cosx的图像及性质分别是?

 我来答
胜军聊旅游
高能答主

2021-04-11 · 爱旅游,专注旅游资讯
胜军聊旅游
采纳数:295 获赞数:21278

向TA提问 私信TA
展开全部

y=cosx的图像如下:

性质:

y=cosx的定义域(-∞,+∞),值域单调性(2n-1)π<x < 2nπ单调递增,2nπ<x <(2n+1)π单调递减。

奇偶性:因为f(-cosx) = f(cos x),所以是:偶函数。周期性:最小正周期2π周期是2nπ。

扩展资料:

余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。

同角三角函数的基本关系式

倒数关系:tanα·cotα=1、sinα·cscα=1、cosα·secα=1;

商的关系:sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;

和的关系:sin²α+cos²α=1、1+tan²α=sec²α、1+cot²α=csc²α;

平方关系:sin²α+cos²α=1。

常用的和角公式

sin(α+β)=sinαcosβ+sinβcosα

sin(α-β)=sinαcosβ-sinB*cosα

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/ (1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/ (1+tanαtanβ)

二倍角公式

sin2α=2sinαcosα

tan2α=2tanα/(1-tan^2(α))

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
帐号已注销
2023-07-14 · 超过522用户采纳过TA的回答
知道小有建树答主
回答量:1302
采纳率:100%
帮助的人:24.6万
展开全部
y = cos(x) 是一个三角函数,表示余弦函数。它的图像和性质如下:
1. 图像:余弦函数的图像在 [0, π] 和 [π, 2π] 之间交替出现,形成一个周期性图形。对于每个完整的周期(2π),余弦函数的值在 -1 到 1 之间变化。当 x = 0 时,y = 1(最大值);当 x = π/2 或 x = 3π/2 时,y = 0;当 x = π 或 x = 2π 时,y = -1(最小值)。余弦函数的图像是关于原点和 x 轴对称的。
2. 性质:
a. 周期性:y = cos(x) 是一个周期函数,其周期为 2π。即对于任何整数 n,都有 cos(x + 2nπ) = cos(x)。
b. 最值:当 x = 0, π/2, π, 3π/2 时,y = cos(x) 的值为 -1, 0, -1, 0。
c. 奇函数:y = cos(x) 是一个奇函数,即 cos(-x) = -cos(x)。这意味着 cos(x) 的图像关于原点对称。
d. 单调性:在 [0, π] 区间内,y = cos(x) 是一个减函数;在 [π, 2π] 区间内,y = cos(x) 是一个增函数。
e. 零点:y = cos(x) 的零点是所有满足 cos(x) = 0 的 x 值,即 x = (2n + 1)π/2,其中 n 为整数。
请注意,这里我们仅讨论了 cos(x) 在实数域上的性质。实际上,cos(x) 是复数域上的一个周期函数,具有更广泛的性质和应用。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
智未来科普
2023-07-19 · 超过91用户采纳过TA的回答
知道小有建树答主
回答量:673
采纳率:88%
帮助的人:19.9万
展开全部

y=cosx的图像及性质如下:
图像:
余弦函数y=cosx的图像是关于x轴对称的,它有两条对称轴,分别是x=π/2和x=3π/2。
性质:

  • y=cosx是一周期函数,它的最小正周期是2π;

  • 在对称轴x=π/2和x=3π/2处,函数取得最大值1;

  • 在对称中心处,即x=π/3和x=4π/3处,函数取得最小值-1;

  • y=cosx的图像是连续且平滑的曲线。
    综上所述,y=cosx的图像及性质包括:对称性、周期性、最大值和最小值、连续性和平滑性。

  • 重新生成

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式