独立随机变量和不相关随机变量的区别是什么?
语义上来讲,独立是指变量之间完全没有关系,但是不相关则仅要求变量之间没有线性关系,因而独立的要求更高,独立的变量一定是不相关的,但是不相关的不一定是独立的,即独立是不相关的充分不必要条件。
举例说明:X,Y均匀分布在单位圆上,因为是圆是对称的,画一条线性回归的线,线的斜率可以为任意值且均匀分布。所以X和Y是不相关的,但是X,Y不是独立的,因为X、Y的取值对彼此有决定性影响。
扩展资料:
随机变量的类型:
1、离散型
离散型随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
2、连续型
连续型随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。
参考资料来源:百度百科-独立随机变量
参考资料来源:百度百科-不相关随机变量
2022-12-02 · 百度认证:北京惠企网络技术有限公司官方账号
1、描述对象不同
独立描述的对象是事件,涉及的是A,B是两事件;不相关描述的对象是随机变量,涉及的是随机变量 X 和 Y 。
2、判断条件不同
独立的判断条件是概率,如果满足等式 p(AB)=P(A)P(B),则事件相互独立;不相关的判断条件是相关系数,如果随机变量 X 和 Y 的相关系数为0,则X和Y 不相关。
扩展资料:
概率论中的不相关是指两个随机变量线性不相关,换言之,可能存在其他的关系;而独立是指两个随机变量之间没有任何一点关系。也就是说,独立一定不相关,而不相关不一定独立。
两个变量是不是相关变量需要用相关系数r来判定,相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度。
若n(n≥2)个随机变量相互独立,则其中任意m(2≤m≤n)个随机变量也相互独立,与各随机变量相联系的任意n个事件也相互独立。
参考资料来源:百度百科-不相关随机变量