1个回答
展开全部
E(X)
=∫(0->无穷) ∫(0->1) 2x^2.e^(-y) dx dy
=(2/3)∫(0->无穷) e^(-y) dy
=-(2/3)[ e^(-y)]|(0->无穷)
=2/3
E(X^2)
=∫(0->无穷) ∫(0->1) 2x^3.e^(-y) dx dy
=(1/2)∫(0->无穷) e^(-y) dy
=-(1/2)[ e^(-y)]|(0->无穷)
=1/2
D(X)=E(X^2) -[E(X)]^2 =1/2 - 4/9 = (9-8)/18=1/18
//
∫(0->无穷) 2xy.e^(-y) dy
=-∫(0->无穷) 2xy de^(-y)
=-2[xye^(-y)]| (0->无穷) +∫(0->无穷) 2x e^(-y) dy
=0-2x[e^(-y)]|(0->无穷)
=2x
E(Y)
=∫(0->1) ∫(0->无穷) 2xy.e^(-y) dy dx
=∫(0->1) 2x dx
=1
//
∫(0->无穷) 2xy^2.e^(-y) dy
= -∫(0->无穷) 2xy^2 de^(-y)
=-2x[y^2.e^(-y)]|(0->无穷) +2∫(0->无穷) 2xye^(-y) dy
=0 +2(2x)
=4x
E(Y^2)
=∫(0->1) ∫(0->无穷) 2xy^2.e^(-y) dy dx
=∫(0->1) 4x dx
=2
D(Y)=E(Y^2) -[E(Y)]^2 =2 - 1 =1
D(X-2Y)=D(X)+4D(Y)=1/18 +4 = 73/8
=∫(0->无穷) ∫(0->1) 2x^2.e^(-y) dx dy
=(2/3)∫(0->无穷) e^(-y) dy
=-(2/3)[ e^(-y)]|(0->无穷)
=2/3
E(X^2)
=∫(0->无穷) ∫(0->1) 2x^3.e^(-y) dx dy
=(1/2)∫(0->无穷) e^(-y) dy
=-(1/2)[ e^(-y)]|(0->无穷)
=1/2
D(X)=E(X^2) -[E(X)]^2 =1/2 - 4/9 = (9-8)/18=1/18
//
∫(0->无穷) 2xy.e^(-y) dy
=-∫(0->无穷) 2xy de^(-y)
=-2[xye^(-y)]| (0->无穷) +∫(0->无穷) 2x e^(-y) dy
=0-2x[e^(-y)]|(0->无穷)
=2x
E(Y)
=∫(0->1) ∫(0->无穷) 2xy.e^(-y) dy dx
=∫(0->1) 2x dx
=1
//
∫(0->无穷) 2xy^2.e^(-y) dy
= -∫(0->无穷) 2xy^2 de^(-y)
=-2x[y^2.e^(-y)]|(0->无穷) +2∫(0->无穷) 2xye^(-y) dy
=0 +2(2x)
=4x
E(Y^2)
=∫(0->1) ∫(0->无穷) 2xy^2.e^(-y) dy dx
=∫(0->1) 4x dx
=2
D(Y)=E(Y^2) -[E(Y)]^2 =2 - 1 =1
D(X-2Y)=D(X)+4D(Y)=1/18 +4 = 73/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询