最小二乘法求线性回归方程
最小二乘法求线性回归方程如下:
最小二乘法:总离差不能用n个离差之和。来表示,通常是用离差的平方和,即:作为总离差,并使之达到最小,这样回归直线就是所有直线中Q取最小值的那一条,这种使“离差平方和最小”的方法,叫做最小二乘法。
由于绝对值使得计算不变,在实际应用中人们更喜欢用:Q=(y1-bx1-a)²+(y2-bx-a²)+...+(yn-bxn-a)²
所以当a,b取什么值时Q最小,即到点直线y=bx+a的“整体距离”最小。
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。
时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。