面面垂直的性质
1个回答
展开全部
面面垂直的性质无锡爱:
一、性质:
1、若两平面垂直,则在一个平面内与交线垂直的直线垂直于另一平面。
2、若两平面垂直,则与一个平面垂直的直线平行于另一平面或在另一平面内。
二、其判定定理是:一个面如果过另外一个面的垂线,那么这两个面相互垂直。即一个平面过另一平面的垂线,则这两个平面相互垂直。
定义:若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。
面面垂直的判定定理如下:
一个平面过另一平面的垂线,则这两个平面相互垂直。
几何描述:若a⊥β,a⊂α,则α⊥β
证明:任意两个平面关系为相交或平行,设a⊥β,垂足为P,那么P∈β
∵a⊂α,P∈a ∴P∈α
即α和β有公共点P,因此α与β相交。
设α∩β=b,∵P是α和β的公共点 ∴P∈b
过P在β内作c⊥b ∵b⊂β,a⊥β ∴a⊥b,垂足为P 又c⊥b,垂足为P ∴∠aPc是二面角α-b-β的平面角 ∵c⊂β ∴a⊥c,即∠aPc=90°
根据面面垂直的定义,α⊥β。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询