反三角函数性质

 我来答
榴莲糖爱旅游
2022-09-30 · TA获得超过366个赞
知道小有建树答主
回答量:556
采纳率:100%
帮助的人:9万
展开全部

反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。

反正弦、反余弦函数定义域均为[-1,1],反正切、反余切函数定义域均为(-∞,∞)。反正弦函数值域为[-π/2,π/2],反余弦函数值域为[0,π],反正切函数值域为(-π/2,π/2),反正切函数值域为(0,π)。这四个函数都不是周期函数

三角函数图像及性质

三角函数是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数,初中阶段常见的三角函数包括正弦函数、余弦函数和正切函数。三角函数的图像是在坐标轴上无限延伸而有规律循环的图像,并且都是对称的。

正弦函数(y=sinx)的图像对称轴为:x=kπ+π/2(k∈Z),对称中心为:(kπ,0)(k∈Z)

余弦函数(y=cosx)的图像对称轴为:x=kπ(k∈Z),对称中心为:(kπ+π/2,0)(k∈Z)

正切函数(y=tanx)的图像无对称轴,对称中心为:kπ/2+π/2,0)(k∈Z)

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式