函数的凹凸性跟什么有关?

 我来答
生活家马先生
2022-08-21 · TA获得超过18.4万个赞
知道小有建树答主
回答量:136
采纳率:100%
帮助的人:3.4万
展开全部

设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,

(1)若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的;

(2)若在(a,b)内f’‘(x)<0,则f(x)在[a,b]上的图形是凸的。

判断函数极大值以及极小值:

结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

扩展资料

1、f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2) , 即V型,为“凸向原点”,或“下凸”(也可说上凹),(有的简称凸有的简称凹)

2、f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2) , 即A型,为“凹向原点”,或“上凸”(下凹),(同样有的简称凹有的简称凸)

在二维环境下,就是通常所说的平面直角坐标系中,可以通过画图直观地看出一条二维曲线是凸还是凹,当然它也对应一个解析表示形式,就是那个不等式。但是,在多维情况下,图形是画不出来的,这就没法从直观上理解“凹”和“凸“的含义了,只能通过表达式。

当然n维的表达式比二维的肯定要复杂,但是,不管是从图形上直观理解还是从表达式上理解,都是描述的同一个客观事实。而且,按照函数图形来定义的凹凸和按照函数来定义的凹凸正好相反。

参考资料来源:百度百科-二阶导数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式