怎么证明奇函数的导数是偶函数

 我来答
新科技17
2022-08-10 · TA获得超过5904个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.9万
展开全部
设 f(x)为可导的偶函数.f(x)=f(-x)
g(x)为f(x)的导函数.
对于任意的自变量位置 x0
g(x0) = lim[f(x0+dx)-f(x0)]/dx
g(-x0) = lim[f(-x0+dx)-f(-x0)]/dx = lim[f(x0-dx)-f(x0))/dx
f(x)可导,其左右导数相等.
即:lim[f(x0+dx)-f(x0)]/dx = lim[f(x0)-f(x0-dx)]/dx
上面这个等式中,左端就是 g(x0)的表达式,而右端即为 -g(-x0)的表达式.
即 g(x0) = - g(-x0)
x0 具备任意性,因此 g(x) = - g(-x)
即在 f(x)是可导偶函数前提下,其导函数是奇函数.求证命题成立.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式