设函数f(x)=x^2-∫_0^2f(x) dx,求f(x)在区间[0,2]上的最大值和最小值

 我来答
科创17
2022-08-29 · TA获得超过5914个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:176万
展开全部
记a=∫_0^2f(x)dx,则a为一个定值f(x)=x^2-a所以∫_0^2f(x)dx=∫_0^2(x^2-a)dx=(0~2)[x^3/3-ax]=8/3-2a因此有a=8/3-2a解得a=8/9所以f(x)=x^2-8/9在[0,2]上最大值为f(2)=4-8/9=28/9最小值为f(0)=-8/9...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式