求函数f(x)=x^2-2ax-1在区间[0,2]上的最大值和最小值

初见周
2011-10-15
知道答主
回答量:21
采纳率:0%
帮助的人:19.4万
展开全部
由题可知,f(x)的对称轴为x=a
1°,当a<=0时,f(x)在[0.2]单调递增,则最大值f(x)=f(2)=4-4a-1,最小值f(x)=f(0)=-1.
2°,当a>=2时,f(x)在[0,2]上单调递减,则最大值f(x)=f(0)=-1,最大值f(x)=f(2)=4-4a-1.
3°,当0<a<=1时,最小值在对称轴处取得,f(x)=f(a)=-a^2-1,最大值在x=2处取得,最小值f(x)=f(2)=4-4a-1.
4°,当1<a<2时,最小值仍在对称轴处取得,值为-a^2-1,最大值在0处取得,最大值f(x)=f(0)=-1.
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
dennis_zyp
2011-10-15 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2亿
展开全部
f(x)=(x-a)^2-1-a^2
开口向上,对称轴为X=a, 根据对称轴与区间的位置关系,得:
a<0, fmin=f(0)=-1, fmax=f(2)=3-4a
0=<a<1, fmin=f(a)=-1-a^2, fmax=f(2)=3-4a
1=<a<=2, fmin=f(a)=-1-a^2, fmax=f(0)=-1
a>2, fmin=f(2)=3-4a, fmax=f(0)=-1
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式