一元三次方程韦达定理证明 证明过程仔细。

 我来答
机器1718
2022-07-21 · TA获得超过6855个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:162万
展开全部
设三次方程为ax^3+bx^2+cx+d=0三个根分别为x1,x2,x3,则方程又可表示为a(x-x1)(x-x2)(x-x3)=0,即ax^3-a(x1+x2+x3)x^2+a(x1*x2+x2*x3+x3*x1)-ax1*x2*x3=0对比原方程ax^3+bx^2+cx+d=0 可知x1+x2+x3=-b/ax1*x2+x2*x3+x3*...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式