对于二阶齐次线性常微分方程方程的通解是其所有解的集合吗?

在教科书中我们得到了这样的定理就是我们求出的二阶线性常微分方程的通解就是y=C1*y1+C2*y2其中y1y2(在此特别说明这两个函数中均不含常数,请注意这个条件)分别是... 在教科书中我们得到了这样的定理就是我们求出的二阶线性常微分方程的通解就是y=C1*y1+C2*y2其中y1 y2(在此特别说明这两个函数中均不含常数,请注意这个条件)分别是这个方程一个特解,但是我想下面的方程也是这个方程的一个解,那就是y=C1*y1+C2*y2+C,显然他也是这个方呈的一个解(但不是通解)。所以我们说教科书上给出的结论实际上是不是所有解的集合,也就是通解就不是一个常微分方程所有解的集合。。。。结束 展开
檀君博Bb
2011-01-09 · TA获得超过3811个赞
知道小有建树答主
回答量:561
采纳率:100%
帮助的人:323万
展开全部
不一定是所有解的集合,高阶微分方程仍然有奇解或者奇点问题,例如你提到的齐次线性常微分方程,y==c/b就是它的一个奇解。奇解问题在利亚普诺夫稳定性理论当中有异常重要的地位,高阶微分方程或者微分方程组的奇解与其通解稳定性有至关重要的联系。
可以说,一般情况下只要存在奇解的方程通解就不是所有解,我记得我考研的时候好像做过一道证明题是说满足柯西问题的齐次线性常微分方程通解必不包含所有解。
哆嗒数学网
2011-01-04 · 教育领域创作者
个人认证用户
哆嗒数学网
采纳数:2537 获赞数:18813

向TA提问 私信TA
展开全部
对于二阶齐次方程
y'' + ay' + by =0
y=C1*y1+C2*y2+C,当C不为0时,不是方程的解。
你验证解的时候验错了。
通解的确是所有解的集合。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
川农又一受害者
2011-01-10 · TA获得超过866个赞
知道小有建树答主
回答量:486
采纳率:0%
帮助的人:441万
展开全部
y=c1*y1+c2*y2+c是二阶非齐次方程y''+ay'+by=c的解,相当于在等式两边同是加上相同常数等式仍然成立。通解确实能通过取不同常数变成任何一个解,也就是说它确实是所有解的集合,但c1*y1+c2*y2不一定是通解,必须要满足y1,y2是其次方程的两个线性无关解

另外针对楼下说有奇点的问题,我想说的是,那些奇点通过c1,c2的组合都能够取到。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lysea2008
2011-01-04 · TA获得超过2121个赞
知道小有建树答主
回答量:605
采纳率:0%
帮助的人:440万
展开全部
y=C1*y1+C2*y2+C只有当C=0的时候才会是解。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式