一道关于高中的向量问题。。。

已知a,b均是非零向量,设a与b的夹角θ是否存在θ,使|a+b|=√3*|a-b|成立,若存在,求出θ值。。。。。不存在说明理由请再清楚一点... 已知a,b均是非零向量,设a与b的夹角θ是否存在θ,使|a+b|=√3*|a-b|成立,若存在,求出θ值。。。。。不存在说明理由
请再清楚一点
展开
wong6764
2011-01-06 · TA获得超过9131个赞
知道大有可为答主
回答量:3350
采纳率:50%
帮助的人:1089万
展开全部
|a+b|=√3*|a-b|,两边平方,a^2+2ab(点乘)+b^2=3(a^2-2ab(点乘)+b^2)
a^2-4ab(点乘)+b^2=0
也就是a^2-4ab*cosθ+b^2=0;
可得实数根,只要16b^2*(cosθ)^2-4b^2≥0(保证有实数根的那个验根公式,把a看成是x)
[cos(θ)]^2≥1/4
可得:1≥|cosθ|≥1/2 绝对值小于一,大于等于二分之一.
可得,1≥cosθ≥1/2==> 0度<θ≤60度,
-1/2≥cosθ≥-1 ==>120度<θ≤180度
麦田的守望者54
2011-01-05 · TA获得超过750个赞
知道小有建树答主
回答量:133
采纳率:0%
帮助的人:68.6万
展开全部
|a+b|=√3*|a-b|,两边平方,a^2+2ab(点乘)+b^2=3(a^2-2ab(点乘)+b^2)
a^2-4ab(点乘)+b^2=0
也就是a^2-4ab*cosθ+b^2=0;
可得,只要16b^2*cos^2θ-4b^2>=0(delta,保证有根的那个验根公式,把a看成是x)
可得:【cosθ】>=1/2 绝对值大于等于二分之一
可得,θ为(0,60)度
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友f0d5cb9
2011-01-06 · TA获得超过4092个赞
知道小有建树答主
回答量:712
采纳率:0%
帮助的人:870万
展开全部
|a+b|=√3*|a-b|,两边平方|a+b|²=3|a-b|²===>2a²-8a*b+2b²=0===>|a|²-4|a||b|cosθ+|b|²=0
∴cosθ=(|a|²+|b|²)/4|a||b|
当|a|=|b|时,cosθ有最小值1/2
∴1/2≤cosθ<1===>0º<θ≤60º
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式