3个回答
展开全部
指数函数的一般形式为y=a^x(a>0且≠1) (x∈R). 它是初等函数中的一种。它是定义在实数域上的单调、下凸、无上界的可微正值函数。
指数函数是数学中重要的函数。应用到值 e 上的这个函数写为 exp(x)。还可以等价的写为 e,这里的 e 是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。 指数函数对于 x 的负数值非常平坦,对于 x 的正数值迅速攀升,在 x 等于 0 的时候等于 1。在x处的切线的斜率等于此处y的值乘上lna。即由导数知识:d(a^x)/dx=a^x*ln(a)。 作为实数变量 x 的函数,y=ex 的图像总是正的(在 x 轴之上)并递增(从左向右看)。它永不触及 x 轴,尽管它可以任意程度的靠近它(所以,x 轴是这个图像的水平渐近线。它的反函数是自然对数 ln(x),它定义在所有正数 x 上。 有时,尤其是在科学中,术语指数函数更一般性的用于形如 kax 的 指数函数于 1 的任何正实数。本文最初集中于带有底数为欧拉数 e 的指数函数。 指数函数的一般形式为y=a^x(a>0且≠1) (x∈R),从上面我们关于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得 如图所示为a的不同大小影响函数图形的情况。 在函数y=a^x中可以看到: (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0函数无意义一般也不考虑。 (2) 指数函数的值域为大于0的实数集合。 (3) 函数图形都是下凸的。 (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过 指数函数
程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6) 函数总是在某一个方向上无限趋向于X轴,并且永不相交。 (7) 函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b) (8) 显然指数函数无界。 (9) 指数函数既不是奇函数也不是偶函数。 (10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。 (11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。
函数,这里的 a 叫做“底数”,是不等
指数函数是数学中重要的函数。应用到值 e 上的这个函数写为 exp(x)。还可以等价的写为 e,这里的 e 是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。 指数函数对于 x 的负数值非常平坦,对于 x 的正数值迅速攀升,在 x 等于 0 的时候等于 1。在x处的切线的斜率等于此处y的值乘上lna。即由导数知识:d(a^x)/dx=a^x*ln(a)。 作为实数变量 x 的函数,y=ex 的图像总是正的(在 x 轴之上)并递增(从左向右看)。它永不触及 x 轴,尽管它可以任意程度的靠近它(所以,x 轴是这个图像的水平渐近线。它的反函数是自然对数 ln(x),它定义在所有正数 x 上。 有时,尤其是在科学中,术语指数函数更一般性的用于形如 kax 的 指数函数于 1 的任何正实数。本文最初集中于带有底数为欧拉数 e 的指数函数。 指数函数的一般形式为y=a^x(a>0且≠1) (x∈R),从上面我们关于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得 如图所示为a的不同大小影响函数图形的情况。 在函数y=a^x中可以看到: (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0函数无意义一般也不考虑。 (2) 指数函数的值域为大于0的实数集合。 (3) 函数图形都是下凸的。 (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过 指数函数
程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6) 函数总是在某一个方向上无限趋向于X轴,并且永不相交。 (7) 函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b) (8) 显然指数函数无界。 (9) 指数函数既不是奇函数也不是偶函数。 (10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。 (11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。
函数,这里的 a 叫做“底数”,是不等
参考资料: http://baike.baidu.com/view/331648.htm
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询