2个回答
2011-01-08 · 知道合伙人教育行家
关注
展开全部
x^2/2 + y^2=1
a=根号2,b=1
c=根号(a^2-b^2)=根号(2-1)=1
右焦点坐标f(1,0)
设直线斜率k,直线y=kx+b
0=k+b,b=-k
y=kx-k,代入x^2/2 + y^2=1得:
x^2/2+(kx-k)^2=1
(2k^2+1)x^2 - 4k^2x + 2(k^2-1) =0
判别式△=(4k^2)^2-4(2k^2+1)*2(k^2-1)=8(k^2+1)
x=(4k^2±根号△)/[2(2k^2+1)]={(4k^2±2根号[(2(k^2+1)]} / [2(2k^2+1)]
={2k^2±根号[(2(k^2+1)]} / (2k^2+1)
|x2-x1|=2根号[(2(k^2+1)] / (2k^2+1)
y=kx-k
|y2-y1|=|k(x2-x1)|= |2k根号[(2(k^2+1)] / (2k^2+1)|
|ab|=4根号2/3
(ab)^2=32/9
(x2-x1)^2+(y2-y1)^2=32/9
{2根号[(2(k^2+1)] / (2k^2+1)}^2 + {2k根号[(2(k^2+1)] / (2k^2+1)}^2 =32/9
4(k^2+1)*2(k^2+1)/(2k^2+1)^2=32/9
(k^2+1)^2=4/9 (2k^2+1)^2
(k^2+1)/(2k^2+1)=2/3
(k^2+1)/k^2=2/1
2k^2=k^2+1
k^2=1
k=±1
直线方程:y=-x+1,或y=x-1
a=根号2,b=1
c=根号(a^2-b^2)=根号(2-1)=1
右焦点坐标f(1,0)
设直线斜率k,直线y=kx+b
0=k+b,b=-k
y=kx-k,代入x^2/2 + y^2=1得:
x^2/2+(kx-k)^2=1
(2k^2+1)x^2 - 4k^2x + 2(k^2-1) =0
判别式△=(4k^2)^2-4(2k^2+1)*2(k^2-1)=8(k^2+1)
x=(4k^2±根号△)/[2(2k^2+1)]={(4k^2±2根号[(2(k^2+1)]} / [2(2k^2+1)]
={2k^2±根号[(2(k^2+1)]} / (2k^2+1)
|x2-x1|=2根号[(2(k^2+1)] / (2k^2+1)
y=kx-k
|y2-y1|=|k(x2-x1)|= |2k根号[(2(k^2+1)] / (2k^2+1)|
|ab|=4根号2/3
(ab)^2=32/9
(x2-x1)^2+(y2-y1)^2=32/9
{2根号[(2(k^2+1)] / (2k^2+1)}^2 + {2k根号[(2(k^2+1)] / (2k^2+1)}^2 =32/9
4(k^2+1)*2(k^2+1)/(2k^2+1)^2=32/9
(k^2+1)^2=4/9 (2k^2+1)^2
(k^2+1)/(2k^2+1)=2/3
(k^2+1)/k^2=2/1
2k^2=k^2+1
k^2=1
k=±1
直线方程:y=-x+1,或y=x-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询