求这个式子的极限,要过程。谢谢。
展开全部
解:∵lim(t->0)[(1-cost)/(e^(t^2)-1)]=lim(t->0)[sint/(2te^(t^2))] (0/0型极限,应用罗比达法则)
=lim(t->0)[(sint/t)/(2e^(t^2))]
=1/2 (应用重要极限lim(z->0)(sinz/z)=1)
∴原式=lim(x->∞){[tan(1/x)-sin(1/x)]/[(1/x)(e^((1/x)^2)-1)]}
=lim(t->0){[(tant-sint)/[t(e^(t^2)-1)]} (令t=1/x)
=lim(t->0){(1/cost)*(sint/t)*[(1-cost)/(e^(t^2)-1)]}
=1*1*(1/2) (应用重要极限lim(z->0)(sinz/z)=1)
=1/2。
=lim(t->0)[(sint/t)/(2e^(t^2))]
=1/2 (应用重要极限lim(z->0)(sinz/z)=1)
∴原式=lim(x->∞){[tan(1/x)-sin(1/x)]/[(1/x)(e^((1/x)^2)-1)]}
=lim(t->0){[(tant-sint)/[t(e^(t^2)-1)]} (令t=1/x)
=lim(t->0){(1/cost)*(sint/t)*[(1-cost)/(e^(t^2)-1)]}
=1*1*(1/2) (应用重要极限lim(z->0)(sinz/z)=1)
=1/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询