等价无穷小中1-cosx可替换为1/2x^2 那1+cosx=-1/2x^2吗

帐号已注销
2021-07-27 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

对cosx做泰勒展开:

cos = 1 - 1/2 * x^2 + ...

因此,1-cosx = 1/2 * x^2 - ...

因此,1+cosx = 2 - 1/2 * x^2 + ...

cosx=1-1/2x^2+o(x^2),这是泰勒公式的余弦展开公式,在求极限的时候可以把cosx用泰勒公式展开代替。

等价无穷小替换

是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

求极限时,使用等价无穷小的条件:

被代换的量,在取极限的时候极限值为0;

被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

热点那些事儿
高粉答主

2020-11-04 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:209万
展开全部

对cosx做泰勒展开:

cos = 1 - 1/2 * x^2 + ...

因此,1-cosx = 1/2 * x^2 - ...

因此,1+cosx = 2 - 1/2 * x^2 + ...

cosx=1-1/2x^2+o(x^2),这是泰勒公式的余弦展开公式,在求极限的时候可以把cosx用泰勒公式展开代替。

扩展资料:

泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。

他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。

泰勒展开式的重要性体现在以下五个方面:

1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。

3、泰勒级数可以用来近似计算函数的值,并估计误差。

4、证明不等式。

5、求待定式的极限。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ACM加油
2014-03-08 · TA获得超过6405个赞
知道大有可为答主
回答量:2007
采纳率:0%
帮助的人:1855万
展开全部
1-cosx可以替换为 1/2x^2
1+cosx就不可以了
替换了关键是 lim fx/gx=1
x—>0
采纳我吧!
追问
既然这样, 那麻烦您帮我看看这道题,  lim(x趋向0) (3sinx+x^2cos(1/x))/((1+cosx)ln(1+x))
追答
先把 ln(1+x)等价于 x
因为符合洛必达法则
上下求导就出来了
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
WM_THU
2014-03-08 · TA获得超过7164个赞
知道大有可为答主
回答量:4285
采纳率:80%
帮助的人:3928万
展开全部
对cosx做泰勒展开:
cos = 1 - 1/2 * x^2 + ...
因此,1-cosx = 1/2 * x^2 - ...

因此,1+cosx = 2 - 1/2 * x^2 + ...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式