展开全部
BE=1/2FD
证明:
过点D作DG∥CA,与BE的延长线交于点G,与AB交于点H
则∠BDG=∠C,∠BHD=∠A=90°=∠BHG
∵∠EDB=1/2∠C
∴∠EDB=1/2∠BDG
又∠BDG=∠EDB+∠EDG
∴∠EDB=∠EDG
又DE=DE,∠DEB=∠DEG=90°
∴△DEB≌△DEG(ASA)
∴BE=GE=1/2BG
∵∠A=90°,AB=AC
∴∠ABC=∠C=∠GDB
∴HB=HD
∵∠BED=∠BHD=90°,∠BFE=∠DFH(对顶角相等)
∴∠EBF=∠HDF
∴△GBH≌△FDH(ASA)
∴GB=FD
∵BE=1/2BG
∴BE=1/2FD
提问者评价
谢谢
证明:
过点D作DG∥CA,与BE的延长线交于点G,与AB交于点H
则∠BDG=∠C,∠BHD=∠A=90°=∠BHG
∵∠EDB=1/2∠C
∴∠EDB=1/2∠BDG
又∠BDG=∠EDB+∠EDG
∴∠EDB=∠EDG
又DE=DE,∠DEB=∠DEG=90°
∴△DEB≌△DEG(ASA)
∴BE=GE=1/2BG
∵∠A=90°,AB=AC
∴∠ABC=∠C=∠GDB
∴HB=HD
∵∠BED=∠BHD=90°,∠BFE=∠DFH(对顶角相等)
∴∠EBF=∠HDF
∴△GBH≌△FDH(ASA)
∴GB=FD
∵BE=1/2BG
∴BE=1/2FD
提问者评价
谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |