如图,已知点D为等腰三角形ABC内的一点,∠ACB=90°,∠CAD=∠CBD=15°,E为AD延长线上一点,且CE=CA……

 我来答
百度网友d60f4a2
2014-04-29 · TA获得超过265个赞
知道小有建树答主
回答量:177
采纳率:0%
帮助的人:210万
展开全部
证明:(1)∵△ABC是等腰直角三角形,
∴∠BAC=∠ABC=45°,
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°﹣15°=30°,
∴BD=AD.
在△BDC与△ADC中,
( BD=AD
{ ∠CBD=∠CAD
( BC=AC
∴△BDC≌△ADC,
∴∠DCB=∠DCA,
又∵∠DCB+∠DCA=90°,
∴∠DCB=∠DCA=45°.
由∠BDM=∠ABD+∠BAD=30°+30°=60°,
∠EDC=∠DAC+∠DCA=15°+45°=60°,
∴∠BDM=∠EDC,
∴DE平分∠BDC;
(2)连接MC.
∵DC=DM,且∠MDC=60°,
∴△MDC是等边三角形,即CM=CD.
又∵∠EMC=180°﹣∠DMC=180°﹣60°=120°,
∠ADC=180°﹣∠MDC=180°﹣60°=120°,
∴∠EMC=∠ADC.
又∵CE=CA,
∴∠DAC=∠CEM.
在△ADC与△EMC中,,
∴△ADC≌△EMC,
∴ME=AD=BD.

参考:http://www.mofangge.com/html/qDetail/02/c2/201207/ekcvc202203086.html
chunxiaoyike00
2014-04-29 · TA获得超过2.8万个赞
知道大有可为答主
回答量:2万
采纳率:0%
帮助的人:1.2亿
展开全部
(1)∵CA=CB,∠ACB=90°,
∴∠CAB=∠CBA=45°,
又∵∠CAD=∠CBD=15°,
∴∠DAB=∠DBA=30°,
∴DA=DB,
∴△ACD≌△BCD(SAS)
∴∠ADC=∠BDC
又∵∠ADB=180°-∠DAB-∠DBA=120°
∴∠BDE=60°,∠BDC=(360-120)/2=120°,
∴∠CDE=60°=∠BDE,
即DE平分∠BDC。

(2)连结CM,
则△CDM等边,
∴∠AMC=∠EDC=60°,
∵CA=CE,
∴∠CAE=∠CEA
∴△CAM≌△CED(AAS),
∴AM=ED,
∴AD=EM,
又∵AD=BD,
∴BD=EM
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式