若存在实数属于[-1,1],使得不等式px^2+(p-3)x-3>0成立,则实数x的取值范围是多少

fnxnmn
2011-01-08 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6715万
展开全部
不等式px^2+(p-3)x-3>0可以化为:p(x^2-3x)-3x-3>0,
这是一个关于p的一元一次不等式,
函数p(x^2-3x)-3x-3是关于p的一次函数,一次函数图像是直线,在定义域上是单调递增或递减。
P∈[-1,1]时,函数p(x^2-3x)-3x-3的最小值必定在端点-1或1处取到。
不等式px^2+(p-3)x-3>0总成立,只需最小值大于0即可。
∴-x^2+(-1-3)x-3>0,且x^2+(1-3)x-3>0,
解得-3<x<-1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式