用换元法求函数解析式的问题中,我有一个地方不是很理解。具体如下
已知f(x-1)=x²-2x,求f(x)的解析式解题过程是这样的:设t=x-1x=t+1f(t)=(t+1)²-2(t+1)f(t)=t²-...
已知f(x-1)=x²-2x,求f(x)的解析式
解题过程是这样的:
设t=x-1
x=t+1
f(t)=(t+1)²-2(t+1)
f(t)=t²-1
f(x)=x²-1
有一个地方不是很理解,麻烦各位给我解释下,
在第三步中,f(t)的自变量是t,而t=x-1,为什么后面的自变量变成了t+1?难道t=x吗?
刚学习这部分,不是太懂,麻烦大家帮下我,谢谢! 展开
解题过程是这样的:
设t=x-1
x=t+1
f(t)=(t+1)²-2(t+1)
f(t)=t²-1
f(x)=x²-1
有一个地方不是很理解,麻烦各位给我解释下,
在第三步中,f(t)的自变量是t,而t=x-1,为什么后面的自变量变成了t+1?难道t=x吗?
刚学习这部分,不是太懂,麻烦大家帮下我,谢谢! 展开
1个回答
展开全部
设t=x-1,这步是用t来代替解析式左侧f(x-1)中的x-1;
t=x-1经过变换,把1移动到等式的左侧,然后等式两边的再调换,最终就变成了x=t+1,这一步是为了用t+1来代替解析式右侧包含的所有的x,这样,最终的目的就是为了变成f(t)=(t+1)²-2(t+1),使解析式变成左右都仅含有t这一个变量,而且最重要的是要让左括号里也就是f下面仅含有一个t,此时,实际上已经算出解析式了,只不过,我们一般都用x来表示解析式,这样,就可以使用最后一步,所有的t都 再取值x,就变成了关于x的常见的函数解析式。
t=x-1经过变换,把1移动到等式的左侧,然后等式两边的再调换,最终就变成了x=t+1,这一步是为了用t+1来代替解析式右侧包含的所有的x,这样,最终的目的就是为了变成f(t)=(t+1)²-2(t+1),使解析式变成左右都仅含有t这一个变量,而且最重要的是要让左括号里也就是f下面仅含有一个t,此时,实际上已经算出解析式了,只不过,我们一般都用x来表示解析式,这样,就可以使用最后一步,所有的t都 再取值x,就变成了关于x的常见的函数解析式。
追问
t=x+1和x=t-1是一个等式吗?也就是等式左边等于左边,右边等于右边?但是3=2+1和2=3-1好像不是一个等式吧...
追答
(t=x+1和x=t-1是一个等式吗)
这道题设的是t=x-1,不是t=x+1。
由t=x-1,得,t+1=x,即:x=t+1
另外,3=2+1和2=3-1,一个是用2来表示3,一个是用3来表示2,就象上面两个式子,一个用 x来表示t, 一个用 t来表示x,虽然表示的对象不一样,但等式之所以是等式,一旦成立,就表示等式两边所含的表达式在数值上是相等的,它们是一个量的两种不同的表达方式。因此,等式两边的表达式,哪一个在等号的左边哪一个在右边,要根据实际需要而变动,无论如何变动,只要等式成立,就不会影响它们数值的相对大小。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询