x^2+y^2≤2
dz=ydx+(x+2y)dy
因积分域关于yOz 坐标平面对称,则 x 的积分为 0.
∫∫∫<Ω>(x+3)dv = ∫∫∫<Ω>xdv +∫∫∫<Ω>3dv
= 0+4πR^3 = 4πR^3
记 F=x+2y+e^(-z)+xz^2, 则 F'<x>=1+z^2, F'<y>=2,
F'<z>=-e^(-z)+2xz, 得
z'<x>=-F'<x>/F'<z>=(1+z^2)/[e^(-z)-2xz],
z'<y>=-F'<y>/F'<z>=2/[e^(-z)-2xz].
绝对收敛,级数 S=-1/4.
题错,(2,4)点不在 x=y^2 上!
若改为 L: y=x^2, y'=2x,
I =∫<L>yds = ∫<1, 2> x^2√(1+4x^2)dx, 令x=tanu/2,
I =∫<arctan2, arctan4> (1/8)(tanu)^2(secu)^3du
= (1/8)∫<arctan2, arctan4> [(sinu)^2/(cosu)^5]du
= (1/8)∫<arctan2, arctan4> [(sinu)^2/(cosu)^6]dsinu,
令 sinu=t
I = (1/8)∫<2/√5, 4/√17>[t^2/(1-t^2)^3]dt
用部分分式解之,过于繁!