如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP
如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射...
如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC=______°;(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.
展开
展开全部
解答: 解:(1)∠EBF=30°;(1分)
∠QFC=60°;(2分)
(2)∠QFC=60°. (1分)
解法1:不妨设BP>
AB,如图1所示.
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ. (2分)
在△ABP和△AEQ中
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ.(SAS) (3分)
∴∠AEQ=∠ABP=90°. (4分)
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°.
∴∠QFC=∠EBF+∠BEF=30°+30°=60°. (5分)
(事实上当BP≤
AB时,如图2情形,不失一般性结论仍然成立,不分类讨论不扣分)
解法2:设AP交QF于M∠QMP为△AMQ和△FMP共同的外角
∴∠QMP=∠Q+∠PAQ=∠APB+∠QFC,
由△ABP≌△AEQ得∠Q=∠APB,由旋转知∠PAQ=60°,
∴∠QFC=∠PAQ=60°.
∠QFC=60°;(2分)
(2)∠QFC=60°. (1分)
解法1:不妨设BP>
3 |
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ. (2分)
在△ABP和△AEQ中
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ.(SAS) (3分)
∴∠AEQ=∠ABP=90°. (4分)
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°.
∴∠QFC=∠EBF+∠BEF=30°+30°=60°. (5分)
(事实上当BP≤
3 |
解法2:设AP交QF于M∠QMP为△AMQ和△FMP共同的外角
∴∠QMP=∠Q+∠PAQ=∠APB+∠QFC,
由△ABP≌△AEQ得∠Q=∠APB,由旋转知∠PAQ=60°,
∴∠QFC=∠PAQ=60°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询