帮忙解一道数学题,谢谢各位啦!!要快
在RT△ABC中,AB=AC∠BAC=90°E是AC中点,如图AD⊥BE于D,CF⊥BE于F(1)求证:AD+CF=BD(2)若E不是AC中点,BE是任意一条射线交AC于...
在RT△ABC中,AB=AC ∠BAC=90° E是AC中点,如图AD⊥BE于D,CF⊥BE于F
(1)求证:AD+CF=BD
(2)若E不是AC中点,BE是任意一条射线交AC于E,AD⊥BE,CF⊥BE,试问AD+CF与BD还相等吗?说明理由。
这是初二的题,各位帮帮忙!!要快!! 展开
(1)求证:AD+CF=BD
(2)若E不是AC中点,BE是任意一条射线交AC于E,AD⊥BE,CF⊥BE,试问AD+CF与BD还相等吗?说明理由。
这是初二的题,各位帮帮忙!!要快!! 展开
3个回答
展开全部
证明:
∵AD⊥BE,CF⊥BE
∴∠ADE=∠CFE=90°
∵AE=CE,∠AED=∠CEF
∴△ADE≌△CFE
∴AD=CF
∵AD⊥BE,∠BAE=90°
∴△ABD∽△EBA
∴AD/BD=AE/AB=1/2
∴BD=2AD=AD+CF
第二问自己想吧。
∵AD⊥BE,CF⊥BE
∴∠ADE=∠CFE=90°
∵AE=CE,∠AED=∠CEF
∴△ADE≌△CFE
∴AD=CF
∵AD⊥BE,∠BAE=90°
∴△ABD∽△EBA
∴AD/BD=AE/AB=1/2
∴BD=2AD=AD+CF
第二问自己想吧。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:1 略
2 还相等。
易知△ABD∽△EDA∽△EFC
∴BD/AB=AD/AE=CF/CE
由合分比定理,BD/AB=(AD+CF)/(AE+CE)
∴BD/AB=(AD+CF)/AC
∵AB=AC
∴BD/AB=(AD+CF)/AB
∴BD=AD+CF
2 还相等。
易知△ABD∽△EDA∽△EFC
∴BD/AB=AD/AE=CF/CE
由合分比定理,BD/AB=(AD+CF)/(AE+CE)
∴BD/AB=(AD+CF)/AC
∵AB=AC
∴BD/AB=(AD+CF)/AB
∴BD=AD+CF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询