初二数学第27题,, 5
1个回答
展开全部
解:
(1)如图1,作CM⊥y轴于M,则CM=4,
∵∠ABC=∠AOB=90゜,
∴∠CBM+∠ABO=90°,∠ABO+∠OAB=90°,
∴∠CBM=∠BAO,
在△BCM和△ABO中
∠BMC=∠AOB
∠CBM=∠BAO
BC=AB
∴△BCM≌△ABO(AAS),
∴OB=CM=4,
∴B(0,-4).
(2)如图2,作CM⊥x轴于M,交AB的延长线于N,
则∠AMC=∠AMN=90°,
∵点C的纵坐标为3,
∴CM=3,
∵AD平分∠CAB,
∴∠CAM=∠NAM,
∴在△CAM和△NAM中
∠CAM=∠NAM
AM=AM
∠AMC=∠AMN
∴△AMC≌△AMN(ASA),
∴CM=MN=3,
∴CN=6,
∵CM⊥AD,∠CBA=90°,
∴∠CBN=∠CMD=∠ABD=90°,
∵∠CDM=∠BDA,∠CMD+∠CDM+∠NCB=180°,∠BDA+∠BAD+∠DBA=180°,
∴∠NCB=∠BAD,
在△CBN和△ABD中
∠NCB=∠BAD
BC=AB
∠CBN=∠ABD
∴△CBN≌△ABD(ASA),
∴AD=CN=2CM=6,
∵A(5,0),
∴D(-1,0).
(1)如图1,作CM⊥y轴于M,则CM=4,
∵∠ABC=∠AOB=90゜,
∴∠CBM+∠ABO=90°,∠ABO+∠OAB=90°,
∴∠CBM=∠BAO,
在△BCM和△ABO中
∠BMC=∠AOB
∠CBM=∠BAO
BC=AB
∴△BCM≌△ABO(AAS),
∴OB=CM=4,
∴B(0,-4).
(2)如图2,作CM⊥x轴于M,交AB的延长线于N,
则∠AMC=∠AMN=90°,
∵点C的纵坐标为3,
∴CM=3,
∵AD平分∠CAB,
∴∠CAM=∠NAM,
∴在△CAM和△NAM中
∠CAM=∠NAM
AM=AM
∠AMC=∠AMN
∴△AMC≌△AMN(ASA),
∴CM=MN=3,
∴CN=6,
∵CM⊥AD,∠CBA=90°,
∴∠CBN=∠CMD=∠ABD=90°,
∵∠CDM=∠BDA,∠CMD+∠CDM+∠NCB=180°,∠BDA+∠BAD+∠DBA=180°,
∴∠NCB=∠BAD,
在△CBN和△ABD中
∠NCB=∠BAD
BC=AB
∠CBN=∠ABD
∴△CBN≌△ABD(ASA),
∴AD=CN=2CM=6,
∵A(5,0),
∴D(-1,0).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询