已知实数x、y满足x^2+y^2-2x-2y+1=0.则根号x^2+y^2的最小值和最大值是什么
3个回答
展开全部
解:∵x²+y²-2x-2y+1=0
==>(x-1)²+(y-1)²=1
∴设x=1+cosa,A=√(x²+y²),则y=1+sina
于是,A=√[(1+cosa)²+(1+sina)²]
==>A²=3+2(cosa+sina)
==>cosa+sina=(A²-3)/2
==>cosa/√2+sina/√2=(A²-3)/(2√2)
==>cosacos(π/4)+sinasin(π/4)=(A²-3)/(2√2)
==>cos(a-π/4)=(A²-3)/(2√2)
∵│cos(a-π/4)│≤1
∴│(A²-3)/(2√2)│≤1
==>│A²-3│≤2√2
==>-2√2≤A²-3≤2√2
==>3-2√2≤A²≤3+2√2
==>(√2-1)²≤A²≤(√2+1)²
==>√2-1≤A≤√2+1
故√(x²+y²)的最小值是√2-1,最大值是√2+1。
==>(x-1)²+(y-1)²=1
∴设x=1+cosa,A=√(x²+y²),则y=1+sina
于是,A=√[(1+cosa)²+(1+sina)²]
==>A²=3+2(cosa+sina)
==>cosa+sina=(A²-3)/2
==>cosa/√2+sina/√2=(A²-3)/(2√2)
==>cosacos(π/4)+sinasin(π/4)=(A²-3)/(2√2)
==>cos(a-π/4)=(A²-3)/(2√2)
∵│cos(a-π/4)│≤1
∴│(A²-3)/(2√2)│≤1
==>│A²-3│≤2√2
==>-2√2≤A²-3≤2√2
==>3-2√2≤A²≤3+2√2
==>(√2-1)²≤A²≤(√2+1)²
==>√2-1≤A≤√2+1
故√(x²+y²)的最小值是√2-1,最大值是√2+1。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:由题设可知,该问题就是求圆:(x-1)²+(y-1)²=1上的点,到原点O(0,0)距离的最大最小。数形结合可知,大=1+√2,小=-1+√2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询