已知正方形ABCD.(1)如图1,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,求证:BE=GH

已知正方形ABCD.(1)如图1,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,求证:BE=GH;(2)如图2,过正方形ABCD内任意一点作两条... 已知正方形ABCD.(1)如图1,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,求证:BE=GH;(2)如图2,过正方形ABCD内任意一点作两条互相垂直的直线,分别交AD,BC于点E,F,交AB,CD于点G,H,EF与GH相等吗?请写出你的结论;(3)当点O在正方形ABCD的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?其中一种情形如图3所示,过正方形ABCD外一点O作互相垂直的两条直线m,n,m与AD,BC的延长线分别交于点E,F,n与AB,DC的延长线分别交于点G,H,试就该图形对你的结论加以证明. 展开
 我来答
灰机09ZX
2015-02-09 · TA获得超过107个赞
知道答主
回答量:123
采纳率:0%
帮助的人:146万
展开全部
解答:(1)证明:在图1中,过点A作GH的平行线,交DC于点H′,交BE于点O'.
∵ABCD是正方形,
∴∠D=90°,∠H′AD+∠AH′D=90°.
∵GH⊥BE,AH′∥GH,
∴AH′⊥BE.
∴∠H′AD+∠BEA=90°.
∴∠BEA=∠AH′D.
在△BAE和△ADH′中,
∠BAE=∠D
∠BEA=∠AH′D
BA=AD

∴△BAE≌△ADH′(AAS),
∴BE=AH′=GH;

(2)解:EF=GH,理由如下:
过E作EM⊥BC,过G作GN⊥CD,
∴∠EMF=∠GNH=90°,
又GH⊥EF,∴∠EOG=∠GOF=90°,
∴∠MEF+∠EQG=90°,∠NGH+∠EQG=90°,
∴∠MEF=∠NGH,又GN=EM,
∴△EMF≌△GNH,
∴EF=GH;

(3)解:相等.
证明:在图3中,过点A作m的平行线交BC于点F′,过点D作n的平行线交AB于点G′.
则有EF=AF′,G′D=GH,
由(1)可知,Rt△ABF′≌Rt△DAG′,
∴AF′=DG′.
从而可证明EF=GH.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式