如图(图1、图2),四边形ABCD是边长为4的正方形,点E在线段BC上,∠AEF=90°,且EF交正方形外角平分线CP

如图(图1、图2),四边形ABCD是边长为4的正方形,点E在线段BC上,∠AEF=90°,且EF交正方形外角平分线CP于点F,FN⊥BC,交BC的延长线于点N。(1)若点... 如图(图1、图2),四边形ABCD是边长为4的正方形,点E在线段BC上,∠AEF=90°,且EF交正方形外角平分线CP于点F,FN⊥BC,交BC的延长线于点N。(1)若点E是BC的中点(如图1),AE与EF相等吗?为什么?(2)点E在BC间运动时(如图2),设BE=x,△ECF的面积为y。 ①求y与x的函数关系式; ②当x取何值时,y有最大值,并求出这个最大值。 图1 图2 展开
 我来答
等艳绿9485
2015-01-17 · TA获得超过129个赞
知道答主
回答量:110
采纳率:0%
帮助的人:113万
展开全部
解:(1)相等。理由:
∵四边形ABCD是正方形,点E是BC的中点
∴∠B=∠DCN=90°,AB=BC=2BE,
∴∠BAE+∠BEA=90°,
∵∠AEF=90°,
∴∠AEB+∠FEC=90°,
∴∠BAE=∠FEN,
∵CF是∠DCN的角平分线,∠FNC=90°,
∴∠FCN=∠CFN=45°,
∴FN=CN,
在Rt△ABE和Rt△ENF中
tan∠BAE=tan∠FEN =
∴EN=2FN,
∴EC+CN=2CN,
∴FN=BE,
∴Rt△ABE≌Rt△ENF,
∴AE=EF;
(2)①tan∠BAE=tan∠FEN=

∴BE(EC+CN)=CN(BE+EC),
∴BE·EC+BE·CN = BE·CN+CN·EC,
∴BE·EC=CN·EC,
∴BE=CN,
∴BE=FN= x, 


当x=2时,y有最大值为2。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式