如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(1)
如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(1)证明:AE⊥平面PAD;(2)取AB=2,若...
如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(1)证明:AE⊥平面PAD;(2)取AB=2,若H为PD上的动点,EH与平面PAD所成最大角的正切值为62,求二面角E-AF-C的余弦值.
展开
1个回答
展开全部
(本小题满分13分)
(1)证明:∵四边形ABCD为菱形,∠ABC=60°,
∴△ABC为正三角形,∵E为BC的中点,
∴AE⊥BC…(1分)
又∵BC∥AD,∴AE⊥AD…(2分)
∵PA⊥平面ABCD,AE?平面ABCD,
∴PA⊥AE…(3分)
而PA?平面PAD,AD?平面PAD,PA∩AD=A,
∴AE⊥平面PAD.…(5分)
(2)解法一:H为PD上任意一点,连接AH,EH,
由(1)知AE⊥平面PAD,则∠EHA为EH与平面PAD所成的角,…(6分)
在RT△EAH中,AE=
,
∴当AH最短时,即当AH⊥PD时,∠EHA最大.…(7分)
此时tan∠EHA=
=
=
,∴AH=
,
又∵AD=2,∴∠ADH=45°,∴PA=2…(8分)
∵PA⊥平面ABCD,PA?平面PAC,
∴平面PAC⊥平面ABCD,
过E作EO⊥AC于O,则EO⊥平面PAC,
过O作OS⊥AF于S,连接ES,则∠ESO为二面角E-AF-C的平面角,…(10分)
在RT△AOE中,EO=AE?sin300=
,AO=AE?cos300=
,
又F是PC的中点,在RT△ASO中,SO=AO?sin450=
,
又SE=
(1)证明:∵四边形ABCD为菱形,∠ABC=60°,
∴△ABC为正三角形,∵E为BC的中点,
∴AE⊥BC…(1分)
又∵BC∥AD,∴AE⊥AD…(2分)
∵PA⊥平面ABCD,AE?平面ABCD,
∴PA⊥AE…(3分)
而PA?平面PAD,AD?平面PAD,PA∩AD=A,
∴AE⊥平面PAD.…(5分)
(2)解法一:H为PD上任意一点,连接AH,EH,
由(1)知AE⊥平面PAD,则∠EHA为EH与平面PAD所成的角,…(6分)
在RT△EAH中,AE=
3 |
∴当AH最短时,即当AH⊥PD时,∠EHA最大.…(7分)
此时tan∠EHA=
AE |
AH |
| ||
AH |
| ||
2 |
2 |
又∵AD=2,∴∠ADH=45°,∴PA=2…(8分)
∵PA⊥平面ABCD,PA?平面PAC,
∴平面PAC⊥平面ABCD,
过E作EO⊥AC于O,则EO⊥平面PAC,
过O作OS⊥AF于S,连接ES,则∠ESO为二面角E-AF-C的平面角,…(10分)
在RT△AOE中,EO=AE?sin300=
| ||
2 |
3 |
2 |
又F是PC的中点,在RT△ASO中,SO=AO?sin450=
3
| ||
4 |
又SE=
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|