如图,矩形ABCD中,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点

如图,矩形ABCD中,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F。求证:四边形ABCD是正方形;当AE=... 如图,矩形ABCD中,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG与CD相交于点F。求证:四边形ABCD是正方形;当AE=2EF时,判断FG与EF有何数量关系?并证明你的结论。 展开
 我来答
最此机5487
2015-01-26 · 超过65用户采纳过TA的回答
知道答主
回答量:142
采纳率:84%
帮助的人:52.9万
展开全部
(1)证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,
∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE。
∵∠BAE=∠BCE,∠AED=∠CED,∴∠CBE=∠ABE。
∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠BAD=90°,AB=CD。
∴∠CBE=∠ABE=45°。∴△ABD与△BCD是等腰直角三角形。
∴AB=AD=BC=CD,∴四边形ABCD是正方形。
(2)解:当AE=2EF时,FG=3EF。证明如下:
∵四边形ABCD是正方形,∴AB∥CD,AD∥BC,∴△ABE∽△FDE,△ADE∽△GBE。
∵AE=2EF,∴BE:DE=AE:EF=2。∴BC:AD=BE:DE=2,即BG=2AD。
∵BC=AD,∴CG=AD。
∵△ADF∽△GCF,∴FG:AF=CG:AD,即FG=AF=AE+EF=3EF。

矩形的性质,三角形外角的性质,等腰直角三角形的判定和性质,正方形的判定,相似三角形的判定和性质。
【分析】(1)由∠BAE=∠BCE,∠AED=∠CED,利用三角形外角的性质,即可得∠CBE=∠ABE,又由四边形ABCD是矩形,即可证得△ABD与△BCD是等腰直角三角形,继而证得四边形ABCD是正方形。
(2)由题意易证得△ABE∽△FDE,△ADE∽△GBE,△ADF∽△GCF,由AE=2EF,利用相似三角形的对应边成比例,即可求得FG=3EF。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式