如图所示:一幅三角板如图放置,等腰直角三角板ABC固定不动,另一块三角板的直角顶点放在等腰直角三角形
如图所示:一幅三角板如图放置,等腰直角三角板ABC固定不动,另一块三角板的直角顶点放在等腰直角三角形的斜边中点D处,且可以绕点D旋转,在旋转过程中,两直角边的交点G、H始...
如图所示:一幅三角板如图放置,等腰直角三角板ABC固定不动,另一块三角板的直角顶点放在等腰直角三角形的斜边中点D处,且可以绕点D旋转,在旋转过程中,两直角边的交点G、H始终在边AB、BC上.(1)在旋转过程中线段BG和CH大小有何关系?证明你的结论.(2)若AB=BC=4cm,在旋转过程中四边形GBHD的面积是否改变?若不变,求出它的值;若改变,求出它的取值范围.(3)若交点G、H分别在边AB、BC的延长线上,则(1)中的结论仍然成立吗?请画出相应的图形,直接写出结论.
展开
1个回答
展开全部
(1)BG和CH为相等关系,
如图1,连接BD,
∵等腰直角三角形ABC,D为AC的中点,
∴DB=DC=DA,∠A=∠DBH=45°,BD⊥AC,
∵∠EDF=90°,
∴∠ADG+∠GDB=90°,
∴∠BDG+∠BDH=90°,
∴∠ADG=∠HDB,
∴在△ADG和△BDH中,
,
∴△ADG≌△BDH(ASA),
∴AG=BH,
∵AB=BC,
∴BG=HC,
(2)∵等腰直角三角形ABC,D为AC的中点,
∴DB=DC=DA,∠DBG=∠DCH=45°,BD⊥AC,
∵∠GDH=90°,
∴∠GDB+∠BDH=90°,
∴∠CDH+∠BDH=90°,
∴∠BDG=∠HDC,
∴在△BDG和△CDH中,
,
∵△BDG≌△CDH(ASA),
∴S四边形DGBH=S△BDH+S△GDB=S△ABD,
∵DA=DC=DB,BD⊥AC,
∴S△ABD=
S△ABC,
∴S四边形DGBH=
S△ABC=4cm2,
∴在旋转过程中四边形GBHD的面积不变,
(3)当三角板DEF旋转至图2所示时,(1)的结论仍然成立,
如图2,连接BD,
∵BD⊥AC,AB⊥BH,ED⊥DF,
∴∠BDG=90°-∠CDG,∠CDH=90°-∠CDG,
∴∠BDG=∠CDH,
∵等腰直角三角形ABC,
∴∠DBC=∠BCD=45°,
∴∠DBG=∠DCH=135°,
∴在△DBG和△DCH中,
,
∴△DBG≌△DCH(ASA),
∴BG=CH.
如图1,连接BD,
∵等腰直角三角形ABC,D为AC的中点,
∴DB=DC=DA,∠A=∠DBH=45°,BD⊥AC,
∵∠EDF=90°,
∴∠ADG+∠GDB=90°,
∴∠BDG+∠BDH=90°,
∴∠ADG=∠HDB,
∴在△ADG和△BDH中,
|
∴△ADG≌△BDH(ASA),
∴AG=BH,
∵AB=BC,
∴BG=HC,
(2)∵等腰直角三角形ABC,D为AC的中点,
∴DB=DC=DA,∠DBG=∠DCH=45°,BD⊥AC,
∵∠GDH=90°,
∴∠GDB+∠BDH=90°,
∴∠CDH+∠BDH=90°,
∴∠BDG=∠HDC,
∴在△BDG和△CDH中,
|
∵△BDG≌△CDH(ASA),
∴S四边形DGBH=S△BDH+S△GDB=S△ABD,
∵DA=DC=DB,BD⊥AC,
∴S△ABD=
1 |
2 |
∴S四边形DGBH=
1 |
2 |
∴在旋转过程中四边形GBHD的面积不变,
(3)当三角板DEF旋转至图2所示时,(1)的结论仍然成立,
如图2,连接BD,
∵BD⊥AC,AB⊥BH,ED⊥DF,
∴∠BDG=90°-∠CDG,∠CDH=90°-∠CDG,
∴∠BDG=∠CDH,
∵等腰直角三角形ABC,
∴∠DBC=∠BCD=45°,
∴∠DBG=∠DCH=135°,
∴在△DBG和△DCH中,
|
∴△DBG≌△DCH(ASA),
∴BG=CH.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询