如图1,在平面直角坐标系中,点B在直线y=2x上,过点B作x轴的垂线,垂足为A,OA=5.若抛物线y=x2+bx+c

如图1,在平面直角坐标系中,点B在直线y=2x上,过点B作x轴的垂线,垂足为A,OA=5.若抛物线y=x2+bx+c过O、A两点.(1)求该抛物线的解析式;(2)若A点关... 如图1,在平面直角坐标系中,点B在直线y=2x上,过点B作x轴的垂线,垂足为A,OA=5.若抛物线y=x2+bx+c过O、A两点.

(1)求该抛物线的解析式;

(2)若A点关于直线y=2x的对称点为C,判断点C是否在该抛物线上,并说明理由;

(3)如图2,在(2)的条件下,⊙O1是以BC为直径的圆.过原点O作⊙O1的切线OP,P为切点(点P与点C不重合).抛物线上是否存在点Q,使得以PQ为直径的圆与⊙O1相切?若存在,求出点Q的横坐标;若不存在,请说明理由.
展开
兴苇然3c
2011-01-14 · TA获得超过3380个赞
知道小有建树答主
回答量:200
采纳率:0%
帮助的人:120万
展开全部
解:
(1)把O(0,0)、A(5,0)分别代入y= x2+bx+c,
得 ,
解得 ;
∴该抛物线的解析式为y= x2- x;
(2)点C在该抛物线上.
理由:过点C作CD⊥x轴于点D,连接OC,设AC交OB于点E
∵点B在直线y=2x上,
∴B(5,10)
∵点A、C关于直线y=2x对称,
∴OB⊥AC,CE=AE,BC⊥OC,OC=OA=5,BC=BA=10
又∵AB⊥x轴,由勾股定理得OB=5
∵SRt△OAB= AE•OB= OA•OB
∴AE=2 ,∴AC=4 ;
∵∠OBA+∠CAB=90°,∠CAD+∠CAB=90°,
∴∠CAD=∠OBA;
又∵∠CDA=∠CAB=90°,
∴△CDA∽△OAB
∴ = = ;
∴CD=4,AD=8;
∴C(-3,4)
当x=-3时,y= ×9- ×(-3)=4;
∴点C在抛物线y= x2- x上;
(3)抛物线上存在点Q,使得以PQ为直径的圆与⊙O1相切;
过点P作PF⊥x轴于点F,连接O1P,过点O1作O1H⊥x轴于点H;
∴CD‖O1H‖BA
∴C(-3,4),B(5,10)
∵O1是BC的中点,
∴由平行线分线段成比例定理得AH=DH= AD=4,
∴OH=OA-AH=1,同理可得O1H=7,
∴点O1的坐标为(1,7)
∵BC⊥OC,∴OC为⊙O1的切线;
又∵OP为⊙O1的切线,
∴OC=OP=O1C=O1P=5
∴四边形OPO1C为正方形,
∴∠POF=∠OCD
又∵∠PFO=∠ODC=90°,
∴△POF≌△OCD
∴OF=CD,PF=OD,
∴P(4,3)
设直线O1P的解析式为y=kx+b(k≠0),
把O1(1,7)、P(4,3)分别代入y=kx+b,
得 ,
解得 ;
∴直线O1P的解析式为y= x+ ;
若以PQ为直径的圆与⊙O1相切,则点Q为直线O1P与抛物线的交点,可设点Q的坐标为(m,n),
则有n= m+ ,n=y= m2- m
∴ m+ = m2- m,
整理得m2+3m-50=0
解得m= ,
∴点Q的横坐标为 或 .
森么回事
2011-01-17 · TA获得超过2088个赞
知道小有建树答主
回答量:403
采纳率:100%
帮助的人:255万
展开全部
我把网址百度hi给你了,里面的解答很详细
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
quehejun
2011-01-09 · TA获得超过169个赞
知道答主
回答量:41
采纳率:0%
帮助的人:11.5万
展开全部
没有图
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-01-13
展开全部
55
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
2岁半的花裤衩
2013-04-06
知道答主
回答量:1
采纳率:0%
帮助的人:1518
展开全部
那个,不应该是y=六分之一x2+bx+c么 - -。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式