问一道初三数学题
如图,在正方形ABCD中,AB=1,弧AC是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E做弧AC所在圆的切线,交边DC于...
如图,在正方形ABCD中,AB=1,弧AC是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E做弧AC所在圆的切线,交边DC于点F,G为切点
设AE=x,FC=y,求y关于x的函数解析式,并写出自变量的取值范围。
求教、谢谢 展开
设AE=x,FC=y,求y关于x的函数解析式,并写出自变量的取值范围。
求教、谢谢 展开
1个回答
展开全部
连接BE 、BG、BF。
因为BG垂直于EF
因为AB=1、AE=X所以BE=X²+1
因为BG=1、所以EG=(X²+1)²-1
又因为FC=Y、BC=1
所以BF=Y²+1
所以FG=(Y²+1)²-1
又因为AE=X、FC=Y所以ED=1-X,FD=1-Y
所以EF²=ED²+DF²
又因为EG=(X²+1)²-1,FG=(Y²+1)²-1
因为EF=EG+FG
由上可知;EF=(X²+1)²-1+(Y²+1)²-1
【(X²+1)²-1+(Y²+1)²-1】²=(1-X)²+(1-Y)²
打累啦 答案自推
因为BG垂直于EF
因为AB=1、AE=X所以BE=X²+1
因为BG=1、所以EG=(X²+1)²-1
又因为FC=Y、BC=1
所以BF=Y²+1
所以FG=(Y²+1)²-1
又因为AE=X、FC=Y所以ED=1-X,FD=1-Y
所以EF²=ED²+DF²
又因为EG=(X²+1)²-1,FG=(Y²+1)²-1
因为EF=EG+FG
由上可知;EF=(X²+1)²-1+(Y²+1)²-1
【(X²+1)²-1+(Y²+1)²-1】²=(1-X)²+(1-Y)²
打累啦 答案自推
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询