求函数y=2sinxcosx+sinx-cosx的值域
2个回答
展开全部
解:
y=2sinxcosx+sinx-cosx
=sin(2x) +√2[(√2/2)sinx-(√2/2)cosx]
=cos(π/2 -2x)+√2[sinxcos(π/4)-cosxsin(π/4)]
=cos(2x- π/2)+√2sin(x-π/4)
=cos[2(x-π/4)]+√2sin(x-π/4)
=1-2sin²(x-π/4)+√2sin(x-π/4)
=-2sin²(x-π/4)+√2sin(x-π/4)+1
=-2[sin(x-π/4) -√2/4]² +5/4
sin(x-π/4)=√2/4时,y取得最大值ymax=5/4
sin(x-π/4)=-1时,y取得最小值ymin=-1-√2
综上,得:函数的值域为[-1-√2,5/4]
y=2sinxcosx+sinx-cosx
=sin(2x) +√2[(√2/2)sinx-(√2/2)cosx]
=cos(π/2 -2x)+√2[sinxcos(π/4)-cosxsin(π/4)]
=cos(2x- π/2)+√2sin(x-π/4)
=cos[2(x-π/4)]+√2sin(x-π/4)
=1-2sin²(x-π/4)+√2sin(x-π/4)
=-2sin²(x-π/4)+√2sin(x-π/4)+1
=-2[sin(x-π/4) -√2/4]² +5/4
sin(x-π/4)=√2/4时,y取得最大值ymax=5/4
sin(x-π/4)=-1时,y取得最小值ymin=-1-√2
综上,得:函数的值域为[-1-√2,5/4]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询