高数,求解释
1个回答
展开全部
解:
分析:想办法先化简,不然直接无法求!
注意到:
2sinxcosx=sin2x
因此:
当x≠0时:
原被求极限式
=cos(x/2)·cos(x/4)·cos(x/8)....cos(x/2^n)
=cos(x/2)·cos(x/4)·cos(x/8)....cos(x/2^n)sin(x/2^n) /sin(x/2^n)
=cos(x/2)·cos(x/4)·cos(x/8)....cos[x/2^(n-1)]·sin[x/2^(n-1)] / 2·sin(x/2^n)
=cos(x/2)·cos(x/4)·cos(x/8)....cos[x/2^(n-2)]·sin[x/2^(n-2)] / 2·2·sin(x/2^n)
.........
=cos(x/2)·sin(x/2) / [2^(n-1)]·sin(x/2^n)
=sinx / 2^(n)·sin(x/2^n)
原极限
=lim(n→∞) sinx / 2^(n)·sin(x/2^n) ............................罗比达法则
=lim(n→∞) cosx / cos(x/2^n)
=cosx
当x=0时,
原极限=1
综上:
原极限=cosx(x≠0)或者1(x=0)
分析:想办法先化简,不然直接无法求!
注意到:
2sinxcosx=sin2x
因此:
当x≠0时:
原被求极限式
=cos(x/2)·cos(x/4)·cos(x/8)....cos(x/2^n)
=cos(x/2)·cos(x/4)·cos(x/8)....cos(x/2^n)sin(x/2^n) /sin(x/2^n)
=cos(x/2)·cos(x/4)·cos(x/8)....cos[x/2^(n-1)]·sin[x/2^(n-1)] / 2·sin(x/2^n)
=cos(x/2)·cos(x/4)·cos(x/8)....cos[x/2^(n-2)]·sin[x/2^(n-2)] / 2·2·sin(x/2^n)
.........
=cos(x/2)·sin(x/2) / [2^(n-1)]·sin(x/2^n)
=sinx / 2^(n)·sin(x/2^n)
原极限
=lim(n→∞) sinx / 2^(n)·sin(x/2^n) ............................罗比达法则
=lim(n→∞) cosx / cos(x/2^n)
=cosx
当x=0时,
原极限=1
综上:
原极限=cosx(x≠0)或者1(x=0)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询