2个回答
展开全部
现根据条件列出方程 分别求出a,b,c的值,然后可得到函数解析式 最后求出单减区间
令x=o,y=12,得P(0,12)
因为导函数是:y'=3ax^2+2bx+c 在P处切线的斜率为:c(将x=o带到导函数解析式)
所以切线为:-cx+y-12=o 由题意可知c=-24
又因为在x=2处极值是-16,y'(x=2)=0,y(x=2)=-16
即:12a+4b-24=o,8a+4b-48+12=0
解得a=-14,b=48
所以函数解析式是:-14x^3+48x^2-24x+12=0
然后再根据导数的定义可求得单调区间
令x=o,y=12,得P(0,12)
因为导函数是:y'=3ax^2+2bx+c 在P处切线的斜率为:c(将x=o带到导函数解析式)
所以切线为:-cx+y-12=o 由题意可知c=-24
又因为在x=2处极值是-16,y'(x=2)=0,y(x=2)=-16
即:12a+4b-24=o,8a+4b-48+12=0
解得a=-14,b=48
所以函数解析式是:-14x^3+48x^2-24x+12=0
然后再根据导数的定义可求得单调区间
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询